
Page 1 of 9

Virtual Memory Management

Because main memory (i.e., transistor memory) is much more expensive, per bit than disk memory

(presently, approximately 10 to 50 times more expensive), it is usually economical to provide most of the

memory requirements of a computer system as disk memory. Disk memory is also ``permanent'' and not

(very) susceptible to such things as power failure. Data, and executable programs, are brought into memory,

or swapped as they are needed by the CPU in much the same way as instructions and data are brought into

the cache. Most large systems today implement this ``memory management'' using a hardware memory

controller in combination with the operating system software.

One of the most primitive forms of ``memory management'' is often implemented on systems with a small

amount of main memory. This method leaves the responsibility of memory management entirely to the

programmer; if a program requires more memory than is available, the program must be broken up into

separate, independent sections and one ``overlaid'' on top of another when that particular section is to be

executed. This type of memory management, which is completely under the control of the programmer, is

sometimes the only type of memory management available for small microcomputer systems. Modern

memory management schemes, usually implemented in mini - to mainframe computers, employ an

automatic, user transparent scheme, usually called ``virtual memory''.

Virtual memory is a computer design feature that permits software to use more memory than the computer

physically possesses. In technical terms, it allows software to run in a memory address space whose size

and addressing are not necessarily tied to the computer's physical memory. It is often a feature of a

computer's operating system and may or may not be a feature of the computer's hardware.

Explanation

Simply put, when a memory location is read or written to, hardware within the computer translates the

memory address generated by the software (the virtual memory address) into a, usually distinct, real

memory address (the physical memory address) within the computer's memory. This is accomplished by

preserving the low order bits of the binary representation of the input address while treating the high order

bits as a key to one or more address translation tables. For this reason a range of consecutive addresses in

the virtual address space whose size is a power of two will be translated in a corresponding range of

consecutive physical addresses. The memory referenced by such a range is called a page. The page size is

typically in the range of 512 to 8192 bytes (with 4K being very common), though page sizes of 4 megabytes

or larger may be used for special purposes. Using the same or a related mechanism, contiguous regions of

virtual memory larger than a page are often mappable to contiguous physical memory for purposes other

than virtualization, such as setting access and cache control bits.

http://www.wordiq.com/definition/Software
http://www.wordiq.com/definition/Computer_storage
http://www.wordiq.com/definition/Computer
http://www.wordiq.com/definition/Physical_memory
http://www.wordiq.com/definition/Operating_system
http://www.wordiq.com/definition/Computer_hardware
http://www.wordiq.com/definition/Power_of_two

Page 2 of 9

The translation is implemented by an MMU. This may be either a module of the CPU or an auxiliary,

closely coupled chip. The MMU may have the ability to monitor page references according to the type of

reference (for read, write or execution) and the privilege mode of the CPU at the time the reference was

generated. In addition, the MMU may detect that a reference is to a page that is marked as unavailable. The

MMU responds to such conditions by raising an exception with the CPU which will be trapped by system

software. This makes it possible for an operating system to carry out swapping. This is the behaviour of

copying one page of memory to disk in order to restore to memory another page copied to disk earlier. This

can be realized in a swap partition, a dedicated section of disk in order to hold paged memory, or in a swap

file.

To minimize the performance penalty of address translation, most modern CPUs include an on-chip MMU,

and maintain a table of recently used physical-to-virtual translations, called a Translation Lookaside Buffer,

or TLB. Addresses with entries in the TLB require no additional time to translate.

The most fundamental advantage of virtual memory is that it allows a computer to multiplex its CPU and

memory between multiple programs without the need to perform expensive copying of the programs'

memory images. It also allows the operating system to protect its own code from corruption by an

erroneous application program and to protect application programs from each other and (to some extent)

from themselves. If the combination of virtual memory system and operating system supports swapping,

then the computer may be able to run simultaneously programs whose total size exceeds the available

physical memory. This is possible because most programs have a small subset (active set) of pages that they

reference over significant periods their execution. If too many programs are run at once, then copies to and

from disk will become excessively frequent and overall system performance will become unacceptably

slow. This is often called thrashing (since the disk is being excessively overworked - thrashed) or paging

storm and corresponds to access to the swap medium being three orders of magnitude or more slower than

access to main memory.

Note that virtual memory is not a requirement for precompilation of software, even if the software is to be

executed on a multiprogramming system. Precompiled software may loaded by the operating system which

has the opportunity to carry out address relocation at load time. This suffers by comparison with virtual

memory in that a copy of program relocated at load time cannot run at a distinct address once it has started

execution.

It is possible to avoid the overhead of address relocation using a process called rebasing, which uses

metadata in the executable image header to guarantee to the run-time loader that the image will only run

within a certain virtual address space. This technique is used on the system libraries on Win32 platforms,

for example.

http://www.wordiq.com/definition/Memory_management_unit
http://www.wordiq.com/definition/CPU
http://www.wordiq.com/definition/Exception
http://www.wordiq.com/definition/Translation_Lookaside_Buffer
http://www.wordiq.com/definition/Rebasing

Page 3 of 9

In embedded systems, swapping is typically not supported—virtual memory is primarily a convenience to

cope with software errors

In a computer system which supports virtual memory management, the computer appears to the

programmer to have its address space limited only by the addressing range of the computer, not by the

amount of memory which is physically connected to the computer as main memory. In fact, each process

appears to have available the full memory resources of the system. Processes can occupy the same virtual

memory but be mapped into completely different physical memory locations. Of course, the parts of a

program and data which are actually being executed must lie in main memory and there must be some way

in which the ``virtual address'' is translated into the actual physical address in which the instructions and

data are placed in main memory. The process of translating, or mapping, a virtual address into a physical

address is called virtual address translation. Figure shows the relationship between a named variable and

its physical location in the system.

Figure: The name space to physical address mapping

This mapping can be accomplished in ways similar to those discussed for mapping main memory into the

cache memory. In the case of virtual address mapping, however, the relative speed of main memory to disk

memory (a factor of approximately 10,000 to 100,000) means that the cost of a ``miss'' in main memory is

very high compared to a cache miss, so more elaborate replacement algorithms may be worthwhile.) In fact,

in most processors, a direct mapping scheme is supported by the system hardware, in which a page map is

http://www.wordiq.com/definition/Embedded_system
http://www.cs.mun.ca/~paul/cs3725/material/web/notes/node11.html#figvtop

Page 4 of 9

maintained in physical memory. This means that each physical memory reference requires both an access to

the page table and and an operand fetch. In effect, all memory references are indirect. Figure shows a

typical virtual-to-physical address mapping.

Figure: A direct mapped virtual to physical address translation

This requirement would be a considerable performance penalty, so most systems which support virtual

addressing have a small associative memory (called a translation lookaside buffer, or TLB) which contains

the last few virtual addresses and their corresponding physical addresses, so in most cases the virtual to

physical mapping does not require an additional memory access. Figure shows a typical virtual-to-

physical address mapping in a system containing a TLB.

http://www.cs.mun.ca/~paul/cs3725/material/web/notes/node11.html#figvm
http://www.cs.mun.ca/~paul/cs3725/material/web/notes/node11.html#figvmtlb

Page 5 of 9

Figure: A virtual to physical address translation mechanism with a TLB

For many current architectures, including the VAX, INTEL 80486, and MIPS, addresses are 32 bits, so the

virtual address space is bytes, or 4 G bytes. A physical memory of about 16-64 M bytes is typical for

these machines, so the virtual address translation must map the 32 bits of the virtual memory address into a

corresponding area of physical memory.

Sections of programs and data not currently being executed normally are stored in disk, and are brought into

main memory as necessary. If a virtual memory reference occurs to a location not currently in physical

memory, the execution of that instruction is aborted, and can be restored again when the required

information is placed in main memory from the disk by the memory controller. (Note that, when the

instruction is aborted, the processor must be left in the same state it would have been had the instruction not

been executed at all). While the memory controller is fetching the required information from disk, the

processor can be executing another program, so the actual time required to find the information on the disk

(the disk seek time) is not wasted by the processor. In this sense, the disk seek time usually imposes little

(time) overhead on the computation, but the time required to actually place the information in memory may

impact the time the user must wait for a result. If many disk seeks are required in a short time, however, the

processor may have to wait for information from the disk.

Normally, blocks of information are taken from the disk and placed in the memory of the processor. The

two most common ways of determining the sizes of the blocks to be moved into and out of memory are

Page 6 of 9

called segmentation and paging, and the term segmented memory management or paged memory

management refer to memory management systems in which the blocks in memory are segments or pages.

Segmented memory management

In a segmented memory management system the blocks to be replaced in main memory are potentially of

unequal length and correspond to program and data ``segments.'' A program segment might be, for example,

a subroutine or procedure. A data segment might be a data structure or an array. In both cases, segments

correspond to logical blocks of code or data. Segments, then, are ``atomic,'' in the sense that either the

whole segment should be in main memory, or none of the segment should be there. The segments may be

placed anywhere in main memory, but the instructions or data in one segment should be contiguous, as

shown in Figure .

Figure: A segmented memory organization

Using segmented memory management, the memory controller needs to know where in physical memory is

the start and the end of each segment. When segments are replaced, a single segment can only be replaced

by a segment of the same size, or by a smaller segment. After a time this results in a ``memory

fragmentation'', with many small segments residing in memory, having small gaps between them. Because

the probability that two adjacent segments can be replaced simultaneously is quite low, large segments may

not get a chance to be placed in memory very often. In systems with segmented memory management,

segments are often ``pushed together'' occasionally to limit the amount of fragmentation and allow large

segments to be loaded.

This organization appears to be efficient because an entire block of code is available to the processor. Also,

it is easy for two processes to share the same code in a segmented memory system; if the same procedure is

http://www.cs.mun.ca/~paul/cs3725/material/web/notes/node12.html#figsmemorg

Page 7 of 9

used by two processes concurrently, there need only be a single copy of the code segment in memory. (Each

process would maintain its own, distinct data segment for the code to access, however.)

Segmented memory management is not as popular as paged memory management, however. In fact, most

processors which presently claim to support segmented memory management actually support a hybrid of

paged and segmented memory management, where the segments consist of multiples of fixed size blocks.

Paged memory management:

Paged memory management is really a special case of segmented memory management. In the case of

paged memory management,

 all of the segments are exactly the same size (typically 256 bytes to 16 K bytes)

 Virtual ``pages'' in auxiliary storage (disk) are mapped into fixed page-sized blocks of main

memory with predetermined page boundaries.

 The pages do not necessarily correspond to complete functional blocks or data elements, as is the

case with segmented memory management.

The pages are not necessarily stored in contiguous memory locations, and therefore every time a memory

reference occurs to a page which is not the page previously referred to, the physical address of the new page

in main memory must be determined. In fact, most paged memory management systems (and segmented

memory management systems as well) maintain a ``page translation table'' using associative memory to

allow a fast determination of the physical address in main memory corresponding to a particular virtual

address. Normally, if the required page is not found in the main memory (i.e, a ``page fault'' occurs) then

the CPU is interrupted, the required page is requested from the disk controller, and execution is started on

another process.

The following is an example of a paged memory management configuration using a fully associative page

translation table:

Consider a computer system which has 16 M bytes (bytes) of main memory, and a virtual memory space

of bytes. Figure shows a sketch of the page translation table required to manage all of main memory if

the page size is 4K bytes. Note that the associative memory is 20 bits wide (32 bits - 12 bits, the

virtual address size -- the page size). Also to manage 16 M bytes of memory with a page size of 4 K bytes, a

total of associative memory locations are required.

http://www.cs.mun.ca/~paul/cs3725/material/web/notes/node12.html#figamptt

Page 8 of 9

Figure: Paged memory management address translation

Some other attributes are usually included in a page translation table, s well, by adding extra fields to the

table. For example, pages or segments may be characterized as read only, read-write, etc. As well, it is

common to include information about access privileges, to help ensure that one program does not

inadvertently corrupt data for another program. It is also usual to have a bit)the ``dirty'' bit) which indicates

whether or not a page has been written to, so that the page will be written back onto the disk if a memory

write has occurred into that page. (This is done only when the page is ``swapped'', because disk access times

are too long to permit a ``write-through'' policy like cache memory.) Also, since associative memory is very

expensive, it is not usual to map all of main memory using associative memory; it is more usual to have a

small amount of associative memory which contains the physical addresses of recently accessed pages, and

maintain a ``virtual address translation table'' in main memory for the remaining pages in physical memory.

A virtual to physical address translation can normally be done within one memory cycle if the virtual

address is contained in the associative memory; if the address must be recovered from the ``virtual address

translation table'' in main memory, at least one more memory cycle must be used to retrieve the physical

address from main memory.

There is a kind of trade-off between the page size for a system and the size of the page translation table

(PTT). If a processor has a small page size, then the PTT must be quite large to map all of the virtual

memory space. For example, if a processor has a 32 bit virtual memory address, and a page size of 512

bytes (bytes), then there are possible page table entries. If the page size is increased to 4 Kbytes (

bytes), then the PTT requires ``only'' , or 1 M page table entries. These large page tables will normally

Page 9 of 9

not be very full, since the number of entries is limited to the amount of physical memory available. One

way these large, sparse PTT's are managed is by mapping the PTT itself into virtual memory. (Of course,

the pages which map the virtual PTT must not be mapped out of the physical memory!)

Note that both paged and segmented memory management provide the users of a computer system with all

the advantages of a large virtual address space. The principal advantage of the paged memory management

system over the segmented memory management system is that the memory controller required to

implement a paged memory management system is considerably simpler. Also, the paged memory

management does not suffer from fragmentation in the same way as segmented memory management.

Another kind of fragmentation does occur, however. A whole page is swapped in or out of memory, even if

it is not full of data or instructions. Here the fragmentation is within a page, and it does not persist in the

main memory when new pages are swapped in.

One problem found in virtual memory systems, particularly paged memory systems, is that when there are a

large number of processes executing ``simultaneously'' as in a multi-user system, the main memory may

contain only a few pages for each process, and all processes may have only enough code and data in main

memory to execute for a very short time before a page fault occurs. This situation, often called ``thrashing,''

severely degrades the throughput of the processor because it actually must spend time waiting for

information to be read from or written to the disk.

