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Virtual Memory Management 

Because main memory (i.e., transistor memory) is much more expensive, per bit than disk memory 

(presently, approximately 10 to 50 times more expensive), it is usually economical to provide most of the 

memory requirements of a computer system as disk memory. Disk memory is also ``permanent'' and not 

(very) susceptible to such things as power failure. Data, and executable programs, are brought into memory, 

or swapped as they are needed by the CPU in much the same way as instructions and data are brought into 

the cache. Most large systems today implement this ``memory management'' using a hardware memory 

controller in combination with the operating system software.  

One of the most primitive forms of ``memory management'' is often implemented on systems with a small 

amount of main memory. This method leaves the responsibility of memory management entirely to the 

programmer; if a program requires more memory than is available, the program must be broken up into 

separate, independent sections and one ``overlaid'' on top of another when that particular section is to be 

executed. This type of memory management, which is completely under the control of the programmer, is 

sometimes the only type of memory management available for small microcomputer systems. Modern 

memory management schemes, usually implemented in mini - to mainframe computers, employ an 

automatic, user transparent scheme, usually called ``virtual memory''.  

Virtual memory is a computer design feature that permits software to use more memory than the computer 

physically possesses. In technical terms, it allows software to run in a memory address space whose size 

and addressing are not necessarily tied to the computer's physical memory. It is often a feature of a 

computer's operating system and may or may not be a feature of the computer's hardware.  

Explanation 

Simply put, when a memory location is read or written to, hardware within the computer translates the 

memory address generated by the software (the virtual memory address) into a, usually distinct, real 

memory address (the physical memory address) within the computer's memory. This is accomplished by 

preserving the low order bits of the binary representation of the input address while treating the high order 

bits as a key to one or more address translation tables. For this reason a range of consecutive addresses in 

the virtual address space whose size is a power of two will be translated in a corresponding range of 

consecutive physical addresses. The memory referenced by such a range is called a page. The page size is 

typically in the range of 512 to 8192 bytes (with 4K being very common), though page sizes of 4 megabytes 

or larger may be used for special purposes. Using the same or a related mechanism, contiguous regions of 

virtual memory larger than a page are often mappable to contiguous physical memory for purposes other 

than virtualization, such as setting access and cache control bits.  
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The translation is implemented by an MMU. This may be either a module of the CPU or an auxiliary, 

closely coupled chip. The MMU may have the ability to monitor page references according to the type of 

reference (for read, write or execution) and the privilege mode of the CPU at the time the reference was 

generated. In addition, the MMU may detect that a reference is to a page that is marked as unavailable. The 

MMU responds to such conditions by raising an exception with the CPU which will be trapped by system 

software. This makes it possible for an operating system to carry out swapping. This is the behaviour of 

copying one page of memory to disk in order to restore to memory another page copied to disk earlier. This 

can be realized in a swap partition, a dedicated section of disk in order to hold paged memory, or in a swap 

file.  

To minimize the performance penalty of address translation, most modern CPUs include an on-chip MMU, 

and maintain a table of recently used physical-to-virtual translations, called a Translation Lookaside Buffer, 

or TLB. Addresses with entries in the TLB require no additional time to translate.  

The most fundamental advantage of virtual memory is that it allows a computer to multiplex its CPU and 

memory between multiple programs without the need to perform expensive copying of the programs' 

memory images. It also allows the operating system to protect its own code from corruption by an 

erroneous application program and to protect application programs from each other and (to some extent) 

from themselves. If the combination of virtual memory system and operating system supports swapping, 

then the computer may be able to run simultaneously programs whose total size exceeds the available 

physical memory. This is possible because most programs have a small subset (active set) of pages that they 

reference over significant periods their execution. If too many programs are run at once, then copies to and 

from disk will become excessively frequent and overall system performance will become unacceptably 

slow. This is often called thrashing (since the disk is being excessively overworked - thrashed) or paging 

storm and corresponds to access to the swap medium being three orders of magnitude or more slower than 

access to main memory.  

Note that virtual memory is not a requirement for precompilation of software, even if the software is to be 

executed on a multiprogramming system. Precompiled software may loaded by the operating system which 

has the opportunity to carry out address relocation at load time. This suffers by comparison with virtual 

memory in that a copy of program relocated at load time cannot run at a distinct address once it has started 

execution.  

It is possible to avoid the overhead of address relocation using a process called rebasing, which uses 

metadata in the executable image header to guarantee to the run-time loader that the image will only run 

within a certain virtual address space. This technique is used on the system libraries on Win32 platforms, 

for example.  
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In embedded systems, swapping is typically not supported—virtual memory is primarily a convenience to 

cope with software errors 

 

In a computer system which supports virtual memory management, the computer appears to the 

programmer to have its address space limited only by the addressing range of the computer, not by the 

amount of memory which is physically connected to the computer as main memory. In fact, each process 

appears to have available the full memory resources of the system. Processes can occupy the same virtual 

memory but be mapped into completely different physical memory locations. Of course, the parts of a 

program and data which are actually being executed must lie in main memory and there must be some way 

in which the ``virtual address'' is translated into the actual physical address in which the instructions and 

data are placed in main memory. The process of translating, or mapping, a virtual address into a physical 

address is called virtual address translation. Figure  shows the relationship between a named variable and 

its physical location in the system.  

    

Figure: The name space to physical address mapping 

This mapping can be accomplished in ways similar to those discussed for mapping main memory into the 

cache memory. In the case of virtual address mapping, however, the relative speed of main memory to disk 

memory (a factor of approximately 10,000 to 100,000) means that the cost of a ``miss'' in main memory is 

very high compared to a cache miss, so more elaborate replacement algorithms may be worthwhile.) In fact, 

in most processors, a direct mapping scheme is supported by the system hardware, in which a page map is 

http://www.wordiq.com/definition/Embedded_system
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maintained in physical memory. This means that each physical memory reference requires both an access to 

the page table and and an operand fetch. In effect, all memory references are indirect. Figure  shows a 

typical virtual-to-physical address mapping.  

    

Figure: A direct mapped virtual to physical address translation 

This requirement would be a considerable performance penalty, so most systems which support virtual 

addressing have a small associative memory (called a translation lookaside buffer, or TLB) which contains 

the last few virtual addresses and their corresponding physical addresses, so in most cases the virtual to 

physical mapping does not require an additional memory access. Figure  shows a typical virtual-to-

physical address mapping in a system containing a TLB.  

http://www.cs.mun.ca/~paul/cs3725/material/web/notes/node11.html#figvm
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Page 5 of 9 

    

Figure: A virtual to physical address translation mechanism with a TLB 

For many current architectures, including the VAX, INTEL 80486, and MIPS, addresses are 32 bits, so the 

virtual address space is bytes, or 4 G bytes. A physical memory of about 16-64 M bytes is typical for 

these machines, so the virtual address translation must map the 32 bits of the virtual memory address into a 

corresponding area of physical memory.  

Sections of programs and data not currently being executed normally are stored in disk, and are brought into 

main memory as necessary. If a virtual memory reference occurs to a location not currently in physical 

memory, the execution of that instruction is aborted, and can be restored again when the required 

information is placed in main memory from the disk by the memory controller. (Note that, when the 

instruction is aborted, the processor must be left in the same state it would have been had the instruction not 

been executed at all). While the memory controller is fetching the required information from disk, the 

processor can be executing another program, so the actual time required to find the information on the disk 

(the disk seek time) is not wasted by the processor. In this sense, the disk seek time usually imposes little 

(time) overhead on the computation, but the time required to actually place the information in memory may 

impact the time the user must wait for a result. If many disk seeks are required in a short time, however, the 

processor may have to wait for information from the disk.  

Normally, blocks of information are taken from the disk and placed in the memory of the processor. The 

two most common ways of determining the sizes of the blocks to be moved into and out of memory are 
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called segmentation and paging, and the term segmented memory management or paged memory 

management refer to memory management systems in which the blocks in memory are segments or pages.  

Segmented memory management 

In a segmented memory management system the blocks to be replaced in main memory are potentially of 

unequal length and correspond to program and data ``segments.'' A program segment might be, for example, 

a subroutine or procedure. A data segment might be a data structure or an array. In both cases, segments 

correspond to logical blocks of code or data. Segments, then, are ``atomic,'' in the sense that either the 

whole segment should be in main memory, or none of the segment should be there. The segments may be 

placed anywhere in main memory, but the instructions or data in one segment should be contiguous, as 

shown in Figure .  

    

Figure: A segmented memory organization 

Using segmented memory management, the memory controller needs to know where in physical memory is 

the start and the end of each segment. When segments are replaced, a single segment can only be replaced 

by a segment of the same size, or by a smaller segment. After a time this results in a ``memory 

fragmentation'', with many small segments residing in memory, having small gaps between them. Because 

the probability that two adjacent segments can be replaced simultaneously is quite low, large segments may 

not get a chance to be placed in memory very often. In systems with segmented memory management, 

segments are often ``pushed together'' occasionally to limit the amount of fragmentation and allow large 

segments to be loaded.  

This organization appears to be efficient because an entire block of code is available to the processor. Also, 

it is easy for two processes to share the same code in a segmented memory system; if the same procedure is 

http://www.cs.mun.ca/~paul/cs3725/material/web/notes/node12.html#figsmemorg
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used by two processes concurrently, there need only be a single copy of the code segment in memory. (Each 

process would maintain its own, distinct data segment for the code to access, however.)  

Segmented memory management is not as popular as paged memory management, however. In fact, most 

processors which presently claim to support segmented memory management actually support a hybrid of 

paged and segmented memory management, where the segments consist of multiples of fixed size blocks.  

Paged memory management:  

Paged memory management is really a special case of segmented memory management. In the case of 

paged memory management,  

 all of the segments are exactly the same size (typically 256 bytes to 16 K bytes)  

 Virtual ``pages'' in auxiliary storage (disk) are mapped into fixed page-sized blocks of main 

memory with predetermined page boundaries.  

 The pages do not necessarily correspond to complete functional blocks or data elements, as is the 

case with segmented memory management.  

The pages are not necessarily stored in contiguous memory locations, and therefore every time a memory 

reference occurs to a page which is not the page previously referred to, the physical address of the new page 

in main memory must be determined. In fact, most paged memory management systems (and segmented 

memory management systems as well) maintain a ``page translation table'' using associative memory to 

allow a fast determination of the physical address in main memory corresponding to a particular virtual 

address. Normally, if the required page is not found in the main memory (i.e, a ``page fault'' occurs) then 

the CPU is interrupted, the required page is requested from the disk controller, and execution is started on 

another process.  

The following is an example of a paged memory management configuration using a fully associative page 

translation table:  

Consider a computer system which has 16 M bytes ( bytes) of main memory, and a virtual memory space 

of bytes. Figure  shows a sketch of the page translation table required to manage all of main memory if 

the page size is 4K bytes. Note that the associative memory is 20 bits wide ( 32 bits - 12 bits, the 

virtual address size -- the page size). Also to manage 16 M bytes of memory with a page size of 4 K bytes, a 

total of associative memory locations are required.  

http://www.cs.mun.ca/~paul/cs3725/material/web/notes/node12.html#figamptt
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Figure: Paged memory management address translation 

Some other attributes are usually included in a page translation table, s well, by adding extra fields to the 

table. For example, pages or segments may be characterized as read only, read-write, etc. As well, it is 

common to include information about access privileges, to help ensure that one program does not 

inadvertently corrupt data for another program. It is also usual to have a bit )the ``dirty'' bit) which indicates 

whether or not a page has been written to, so that the page will be written back onto the disk if a memory 

write has occurred into that page. (This is done only when the page is ``swapped'', because disk access times 

are too long to permit a ``write-through'' policy like cache memory.) Also, since associative memory is very 

expensive, it is not usual to map all of main memory using associative memory; it is more usual to have a 

small amount of associative memory which contains the physical addresses of recently accessed pages, and 

maintain a ``virtual address translation table'' in main memory for the remaining pages in physical memory. 

A virtual to physical address translation can normally be done within one memory cycle if the virtual 

address is contained in the associative memory; if the address must be recovered from the ``virtual address 

translation table'' in main memory, at least one more memory cycle must be used to retrieve the physical 

address from main memory.  

There is a kind of trade-off between the page size for a system and the size of the page translation table 

(PTT). If a processor has a small page size, then the PTT must be quite large to map all of the virtual 

memory space. For example, if a processor has a 32 bit virtual memory address, and a page size of 512 

bytes ( bytes), then there are possible page table entries. If the page size is increased to 4 Kbytes ( 

bytes), then the PTT requires ``only'' , or 1 M page table entries. These large page tables will normally 
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not be very full, since the number of entries is limited to the amount of physical memory available. One 

way these large, sparse PTT's are managed is by mapping the PTT itself into virtual memory. (Of course, 

the pages which map the virtual PTT must not be mapped out of the physical memory!)  

Note that both paged and segmented memory management provide the users of a computer system with all 

the advantages of a large virtual address space. The principal advantage of the paged memory management 

system over the segmented memory management system is that the memory controller required to 

implement a paged memory management system is considerably simpler. Also, the paged memory 

management does not suffer from fragmentation in the same way as segmented memory management. 

Another kind of fragmentation does occur, however. A whole page is swapped in or out of memory, even if 

it is not full of data or instructions. Here the fragmentation is within a page, and it does not persist in the 

main memory when new pages are swapped in.  

One problem found in virtual memory systems, particularly paged memory systems, is that when there are a 

large number of processes executing ``simultaneously'' as in a multi-user system, the main memory may 

contain only a few pages for each process, and all processes may have only enough code and data in main 

memory to execute for a very short time before a page fault occurs. This situation, often called ``thrashing,'' 

severely degrades the throughput of the processor because it actually must spend time waiting for 

information to be read from or written to the disk.  

 

 


